附录 A:常用积分表
本附录列出了一些常用的不定积分公式,供读者查阅。 在使用这些公式时,需要注意积分常数 \(C\)。
A.1 基本初等函数的积分¶
| 序号 | 函数 | 不定积分 |
|---|---|---|
| 1 | \(k\) (常数) | \(kx + C\) |
| 2 | \(x^\mu\) (\(\mu \neq -1\)) | \(\frac{x^{\mu+1}}{\mu+1} + C\) |
| 3 | \(\frac{1}{x}\) | $\ln |
| 4 | \(e^x\) | \(e^x + C\) |
| 5 | \(a^x\) (\(a > 0, a \neq 1\)) | \(\frac{a^x}{\ln a} + C\) |
| 6 | \(\cos x\) | \(\sin x + C\) |
| 7 | \(\sin x\) | \(-\cos x + C\) |
| 8 | \(\frac{1}{\cos^2 x} = \sec^2 x\) | \(\tan x + C\) |
| 9 | \(\frac{1}{\sin^2 x} = \csc^2 x\) | \(-\cot x + C\) |
| 10 | \(\sec x \tan x\) | \(\sec x + C\) |
| 11 | \(\csc x \cot x\) | \(-\csc x + C\) |
| 12 | \(\frac{1}{1+x^2}\) | \(\arctan x + C\) |
| 13 | \(\frac{1}{\sqrt{1-x^2}}\) | \(\arcsin x + C\) |
A.2 常用的不定积分公式¶
| 序号 | 函数 | 不定积分 |
|---|---|---|
| 1 | \(\tan x\) | \(-\ln \cos x + C\) |
| 2 | \(\cot x\) | \(\ln \sin x + C\) |
| 3 | \(\sec x\) | \(\ln \sec x + \tan x + C\) |
| 4 | \(\csc x\) | \(\ln \csc x - \cot x + C\) |
| 5 | \(\frac{1}{a^2+x^2}\) | \(\frac{1}{a} \arctan \frac{x}{a} + C\) |
| 6 | \(\frac{1}{\sqrt{a^2-x^2}}\) | \(\arcsin \frac{x}{a} + C\) |
| 7 | \(\frac{1}{x^2-a^2}\) | \(\frac{1}{2a} \ln \frac{x-a}{x+a} + C\) |
| 8 | \(\frac{1}{\sqrt{x^2+a^2}}\) | \(\ln(x + \sqrt{x^2+a^2}) + C\) |
| 9 | \(\frac{1}{\sqrt{x^2-a^2}}\) | \(\ln x + \sqrt{x^2-a^2} + C\) |
| 10 | \(\sqrt{a^2 - x^2}\) | \(\frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C\) |
| 11 | \(\sqrt{x^2 \pm a^2}\) | \(\frac{x}{2}\sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln x+\sqrt{x^2 \pm a^2} + C\) |
| 12 | \(\int \frac{1}{\sin x}dx\) | \(\ln \tan\frac{x}{2} +C\) |
| 13 | \(\int \frac{1}{\cos x}dx\) | \(\ln \tan(\frac{x}{2}+\frac{\pi}{4}) +C\) |
A.3 一些特殊的定积分公式¶
-
Wallis 公式:
\[W_n = \int_0^{\pi/2} \sin^n x dx = \int_0^{\pi/2} \cos^n x dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}, & n \text{ 为偶数} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3}, & n \text{ 为大于1的奇数} \end{cases}\]利用 Wallis 公式可以推导出:
\[\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left[ \frac{(2n)!!}{(2n-1)!!} \right] = \sqrt{\pi}\] -
伽玛函数的几个特殊值:
- \(\Gamma(1) = 1\)
- \(\Gamma(\frac{1}{2}) = \sqrt{\pi}\)
- \(\Gamma(n) = (n-1)!\) (\(n\) 为正整数)